skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Li, Wenting"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The integration of machine learning in power systems, particularly in stability and dynamics, addresses the challenges brought by the integration of renewable energies and distributed energy resources (DERs). Traditional methods for power system transient stability, involving solving differential equations with computational techniques, face limitations due to their time-consuming and computationally demanding nature. This paper introduces physics-informed Neural Networks (PINNs) as a promising solution for these challenges, especially in scenarios with limited data availability and the need for high computational speed. PINNs offer a novel approach for complex power systems by incorporating additional equations and adapting to various system scales, from a single bus to multi-bus networks. Our study presents the first comprehensive evaluation of physics-informed Neural Networks (PINNs) in the context of power system transient stability, addressing various grid complexities. Additionally, we introduce a novel approach for adjusting loss weights to improve the adaptability of PINNs to diverse systems. Our experimental findings reveal that PINNs can be efficiently scaled while maintaining high accuracy. Furthermore, these results suggest that PINNs significantly outperform the traditional ode45 method in terms of efficiency, especially as the system size increases, showcasing a progressive speed advantage over ode45. 
    more » « less
  2. Captions play a major role in making educational videos accessible to all and are known to benefit a wide range of learners. However, many educational videos either do not have captions or have inaccurate captions. Prior work has shown the benefits of using crowdsourcing to obtain accurate captions in a cost-efficient way, though there is a lack of understanding of how learners edit captions of educational videos either individually or collaboratively. In this work, we conducted a user study where 58 learners (in a course of 387 learners) participated in the editing of captions in 89 lecture videos that were generated by Automatic Speech Recognition (ASR) technologies. For each video, different learners conducted two rounds of editing. Based on editing logs, we created a taxonomy of errors in educational video captions (e.g., Discipline-Specific, General, Equations). From the interviews, we identified individual and collaborative error editing strategies. We then further demonstrated the feasibility of applying machine learning models to assist learners in editing. Our work provides practical implications for advancing video-based learning and for educational video caption editing. 
    more » « less
  3. null (Ed.)